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Note 

Spherical Bessel Functions of Large Order 

This note introduces functions b,(x), related to spherical Bessel functions j,(x) and 
y,(x). They are scaled so that they are bounded functions of n and polynomially bounded 
functions of X, and therefore avoid the problems of underflow and overflow which are so 
common with Bessel functions. They can be generated from a stable recurrence relation 
for which starting values are readily computable. 

The definitions of the special functions are well suited to classical analysis, but 
often not to computation. For example, the spherical Bessel functions,j,(x) and y,(x) 
for sufficiently large order II and fixed argument x will, respectively, underflow and 
overflow the range of any computer, and this can be a serious embarrassment. When 
underflow occurs the value ,jJx) assigned to .jJ.u) will be zero, and when overflow 
occurs the value p,(x) assigned to y,(x) will depend upon the machine, but generally 
will be meaningless. In either case, 

,jn(x) fn(x) +..i,(x> yn(x) = -(I/@ + 1) -y)[l + Wfl-‘)l. 

To illustrate this point, consider the series 

where 

and 

The function 

ik 5 (2~ -I- 1) P71(~~~ 8) hz)(kr) hz)(kr’) jll(ka)/h~~)(ka), 
n=n 

t-=1x!, r’= IX’I, 

case =y;, 

exp ik I x - x’ / 
lx-x’l - - go4 x’> 

is a fundamental solution of Helmholtz’s equation which vanishes on the surface of a 
sphere of radius a. When both x and x’ are close to the surface of the sphere, this 
series converges very slowly. In fact, 

[I +- O(fl-I)] (1) 

0021-9991/&O/070128-05$02.00/O 
Copyright 0 1980 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



SPHERICAL BESSEL FUNCTIONS 129 

and 

p n (cos 6) _ corn f 2) 6 - 2-4 
n1/z(+7 sin @l/2 u + ~W)l, 

so the geometric decay begins slowly when (a2/rr’) is close to unity and terms with 
large n can be significant. Again, if 

ka=kr- I, kr’ =- I 1, n = 30, 

then 

which is not insignificant. However, 

,jJka) 'v 5 57 x 10-d3, 

which will underflow the range of many machines, so the left-hand side of (1) cannot 
be computed by evaluating the Bessel functions and then forming the products and 
ratios indicated. 

The remedy for this difficulty is obvious. We must extract fromj, a factor which 
decays with n, and from .yn a factor which grows with II, so that the residue in each 
case is comparable with unity. These decaying and growing factors can then be 
cancelled analytically from the formulas. 

The purpose of this note is to introduce a scaled Bessel function b,(x), defined by 

,j&) _ + ; &‘2 x 71--‘-- 
! ) 2 j-yn + 3, LdX)~ 

I? z=z 0, +1, &2 )...) 

,).,(,y) zz. - ; ,-l/2 ‘5 ( 2 )--n1 r (* 3- ;, b,(x), 

and to show that it is an easily computable, polynomially bounded function of n and 
x. In particular, when x is fixed and n 2 x, then by_,, b-,(x),..., b,(x) can be 
generated from a stable recurrence relation for which starting values are readily 
computable. Consequently, a device such as J. C. P. Miller’s method (described in 
[l]) for computing spherical Bessel functions is not needed for the scaled function. It 
would be a simple matter to modify the definitions of the other special functions 
similarly. 

From the definition of the Bessel function and an inequality in Watson’s treatise [2], 
we find the series 
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which converges uniformly and absolutely for all (n, x), and the inequalities 

When x is fixed and 

b,(x) = 1 + ,y:, _____ + W+), 

so b,(x) converges to I 1, from above when n > 0 and from below when n < 0. 
Then function b, satisfies the recurrence relation 

where 
bk+dx) = bdx) - 4~) L,W, 

cG2 
Uk(X) = p _ a > 

(2) 

which will be shown to be stable in the direction of increasing k. The series for b-,-,(x) 
and b-,(x) converge very rapidly when n 2 x, and b,(x) and b,(x) are given by 
elementary functions, 

b,(x) = cos x, b,(x) = cos x + x sin x. 

Thus, initial data for (2) are computable so 

and 
b-,-,(x), L&4..., b-,(x) 

b,(x), WL b,(x) 

can be generated by recurrence. 
In order to investigate the stability of the recurrence relation for b, , set 

so that 

where 

b k-l-1 = Akbk , 

Ak = (_“,, :, * 
The computed solution 6, will not satisfy (3) but rather 

(3) 

6k+, = Akbk f ek , 
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where e, denotes the error introduced by rounding at the kth iteration of (3). The 
cumulative error, 

rr = b, - bk , 

will also satisfy 

rk+l = A,r, + eL 

with initial data equal to the error in the computed initial data for (3). The eigenvalues 
of Ak are 

&* = &(I f (1 - 4a&19. 

which have the following properties: 

(I) A,* = g&p., k = 0, where p = (x2 + &)1/2; 
- 

(2) A,+ = hk-, I A,* I = Q;‘~, 0 < 1 k I < /A ; 

‘<- (3) 0 <A,- < hk- 

Let 

& < A, i- < XI+ < 1, p < ( k j < / I j . 

so that 

where 

Introduce the norms 

with respect to which 

A, = P,J,P;l , 

II ” Ilk = II Pi?” I/m 9 v E c2, 

II A, Ilk = ,4&c) = maxtl hk+ I , I hk- IL 

where p(A,) denotes the spectral radius of A,. Note that these definitions fail if 
/ k j = p and the eigenvalues of Al, coincide, but the modifications required are trivial 
so this case will be dismissed. The norms are compatible, since 

and 

II ” Ilk = II K1p?4K:,” llm 

G II p;lpk-l IL II 21 Ilk-1 2 

< /I ek Ilk f /I Ak Ilk II pilpk-l i/m 11 fk Ilk-l . 
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In order that the recurrence relation should be stable, the errors must not grow 
geometrically, and to secure this we require that 

ideally for all k but in practice only whenever / k 1 is large. Now it is easy to verify that 

I/ fYp,-1 Ila = 1, k>l+p, 

= (& - X;wl)/(hk+ - A,-) > 1, k < -p, 

so 

pk = A,’ < 1, k>l+pL, 

= hki(& - Lm- - G), k < -p. 

A somewhat longer calculation shows that 

A,‘(&-:_, - Xi-J/&+ - A,-) < 1 

if k < -p and k also satisfies the inequality 

8kG - (15~2 + 38) k-’ + (12x2 $- 32) k3 + (6x4 + $&x2 + 8 k2 

_ (12x3 A 39x2 + 8) k + (2 + ix” + 9_,gSX2 + ‘8) > 0. (4) 

Note that (4) certainly will hold if 

k < - (I x I + 4). 

Thus, the stability of the recurrence scheme is proven. 
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